

Yes-no question marker

- Experiment results support **a refinement of the PerspP proposal**.
- I show this using a novel paradigm for eliciting semantic judgments.

Empirical motivation for PerspP

ENGLISH EMBEDDED INVERTED QUESTIONS (EIQS) (MCCLOSKEY 2006)

- ElQs \neq direct quotations: the former allow variable binding (6).
- Unlike rogatives, responsives do not allow ElQs (7).
- Responsives can be shifty: they do allow EIQs under questions (8).
- (6) a. [Every male physicist]_i wonders [will he_i be awarded a Nobel Prize]_↑.
 - b. [Every male physicist]_i wonders, ["Will he_{i/*i} be awarded a Nobel</sub>Prize?"]
- (7) #Sue remembers [was Henry a communist] $_{\uparrow}$.
- Does Sue remember [was Henry a communist],? (8)

Mandarin Chinese ma: Q morpheme, SA intensifier, or PQP?

Yuyang Liu

Yale University

Persp⁰ evolving into ma

LEXICAL DIFFERENCES IN RESPONSIVES (DAYAL 2023)

- Unlike remember, forget allows ElQs in declaratives.
- Relevant distinction for ElQs: quasi subordinator (QS) vs. non-quasi subordinator (NQS) (\neq rogative vs. responsive).

	QS: $\diamondsuit \neg know(x, Q)$
ogative: [+Q]	want to know, w
esponsive: [±Q]	forget

 Table 1. Predicates of different types

A QS allows its subject (x) to not know the answer to its complement (Q):

- *Ignorance* (9*a*) + *resolution* (9*b*) → *EIQ* (Dayal 2023) $(\mathbf{9})$
 - a. $\llbracket \mathsf{Persp}^{\mathsf{o}} \rrbracket = [\lambda Q. \lambda x: \Diamond \neg \mathsf{know}(x, Q). Q]$
 - b. A positive answer to the matrix question must lead to a resolution of the embedded question.

New proposal for *ma***: Refined Persp^o**

Ignorance + *knowledge* ··> ma (10) $\llbracket \mathsf{ma} \rrbracket = [\lambda Q. \lambda x: \Diamond \neg \mathsf{know}(x, Q) \land \Diamond \mathsf{know}(\mathsf{addressee}_{c}, Q). Q]$

Novel semantic judgment elicitation paradigm

EXPERIMENT SETUP

R

The proposals predict different effects of matrix **predicate type** (\times 2), illocutionary force (\times 2), and subject person (\times 3) on embedded ma.

- $(2 \times 2 \times 3)$ conditions $\times 4$ items = 48 tokens.
- 12 **Beijing Mandarin** speakers (ages 22–24, $\mu = 23.67$) participated.

FORCED-CHOICE TASK

- Choose (b) if the two sentences in (a) can be naturally conveyed using the one sentence in (b) (= **the target sentence**).
- Choose (a) otherwise.

EXAMPLE STIMULUS

- (11) a. Xiaohong_i xiang zhidao yi jian shi. Na jiu shi ta_i de fenshu shi-bu-shi bi wo $_i$ gao.
 - score is higher than mine i.
 - b. Xiaohong_i xiang zhidao, $[ta_i de fenshu bi wo_i gao]$ Xiaohong want know 3SG POSS score than 1SG high ma? MA
 - 'Xiaohong_i wants to know, was her_i score higher than mine_i?'

Pronoun references were made clear through accompanying contexts.

SA^o

Persp^o

ma

(McCloskey 2006: 89)

(Dayal 2023: 20)

(Dayal 2023: 20)

NQS: $\Box \mathsf{know}(x, Q)$

vonder

know, remember

'Xiaohong_i wants to know one thing. That thing is whether her_i

PREDICTIONS

- CP: *ma* is generally embeddable.

('You ...' 'Xiaohong...' 'Do I ...?'

'Do you ...?' 'Does Xiaohong...

Table 2. Predictions for *ma*'s embeddability by different proposals

Questioning one's own knowledge state is odd: 'Do I...?' items were fillers.

RESULTS

(1...)

Ύοι

'Xia

'Do

'Do

'Do

Table 3. Acceptability rates of embedded ma (= proportion of choosing (b))

- The results align best with the RPP proposal.

ACKNOWLEDGEMENTS AND SELECTED REFERENCES

I thank Veneeta Dayal & Jason Shaw for advice; Yulin Du, Lingxiao Gao & twelve anonymous survey participants for judgments; and Eno Agolli, Comfort Ahenkorah, Ushasi Banerjee, Miriam Butt, Kathryn Davidson, Si Kai Lee, Richard Luo, Yitong Luo, Maribel Romero, Uli Sauerland, Milena Šereikaitė, Squid Tamar-Mattis, Jim Wood, Yūsuke Yagi, Ka-Fai Yip, Xuetong Yuan & Yuhan Zhang for feedback. Errors mine. Dayal, Veneeta. 2023. The interrogative left periphery: How a clause becomes a question. *Linguistic Inquiry*. McCloskey, James. 2006. Questions and questioning in a local English. In Raffaella Zanuttini, Héctor Campos, Elena Herburger & Paul Portner (eds.), Crosslinguistic research in syntax and semantics: Negation, tense, and clausal architecture, 87–126. Washington, DC: Georgetown University Press.

Predictions and results

SAP: ma's embeddability follows the felicity conditions of asking. PerspP: ma's embeddability follows (9) and mirrors English EIQs. Refined PerspP (RPP): ma's embeddability follows (10).

	СР		SAP		PerspP		RPP	
	QS	NQS	QS	NQS	QS	NQS	QS	NQS
	1	1	1	0	1	0	1	0
	1	1	0	1	1	0	0	0
	1	1	1	1	1	0	1	0
	0	0	0	0	0	0	0	0
	1	1	0	0	0	1	1	1
?'	1	1	1	1	0	1	1	1

	QS	NQS
	.83	.02
J'	.21	.35
iohong'	.73	.15
?'	.06	.23
you?'	.75	.77
es Xiaohong?'	.67	.63

Open question: Why do English ElQs and Mandarin ma vary?

• Hypothesis: different question-asking strategies in competition.

Concluding remarks

Ma is not a Q morpheme or SA intensifier but may be a PQP. Ma also requires knowledge in addition to ignorance.